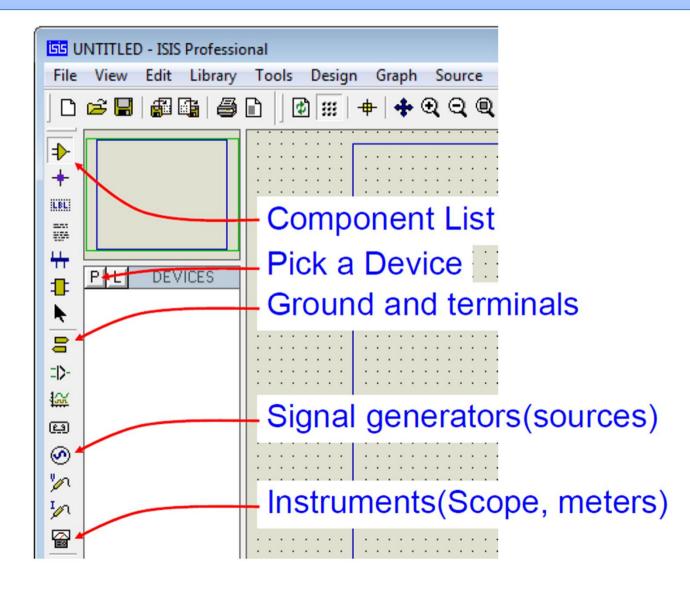
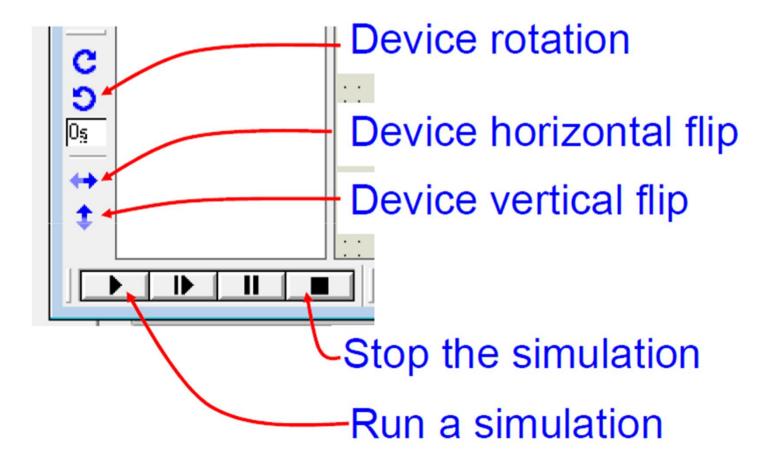
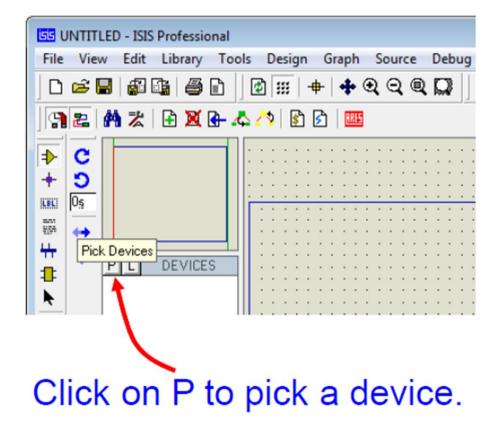

Microprocessors and Microcontrollers (EE-231)

Lab-2


Main Objectives

- Introduction to Proteus ISIS and its use in 8051 simulation.
- Writing an Assembly program in KEIL and Its debugging.
- Generating Delay using a subroutine in Assembly.
- Generating Delay using For Loop in "C".


Proteus Environment


Tools and Buttons

Tools and Buttons

Picking a Device

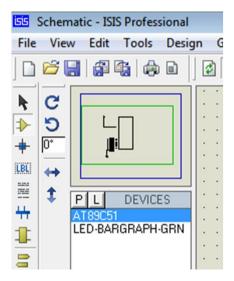
Picking a Device

- In order to pick a microcontroller
- Now either go in "Microprocessors category" or in keyword space write "AT89C51"

isis Pick Devices				
Keywor <u>d</u> s:		<u>R</u> esults (8):		
At89c51		Device	Library	Description
Match Whole Words?		AT89C51	MCS8051	8051 Microcontoller (4kB code, 33MHz, 2x16-bit Timers, UART)
Show only parts with models?	~	AT89C51.BUS	MCS8051	8051 Microcontoller (4kB code, 33MHz, 2x16-bit Timers, UART)
Category:	_	AT SC51RB2 AT SC51RB2.BUS	MCS8051 MCS8051	8051 Microcontoller (16kB code, 48MHz, Watchdog Timer, 3x16-bit Timers, UART) 8051 Microcontoller (16kB code, 48MHz, Watchdog Timer, 3x16-bit Timers, UART)
(All Categories)		AT8 C51RC2 AT85 C51RC2.BUS	MCS8051	8051 Microcontoller (32kB code, 48MHz, Watchdog Timer, 3x16-bit Timers, UART)
Microprocessor ICs		AT89051RD2	MCS8051 MCS8051	8051 Microcontoller (32kB code, 48MHz, Watchdog Timer, 3x16-bit Timers, UART) 8051 Microcontoller (64kB code, 40MHz, Watchdog Timer, 3x16-bit Timers, UART)
		AT89051RD2.BUS		8051 Microcontoller (64kB code, 40MHz, Watchdog Timer, 3x16-bit Timers, UART)

Double click on this highlighted line.

Picking a Device


- Now in order to pick a " BAR LED"
- write BAR LED in keyword space or choose 'Optoelectronics'

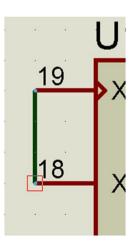
55 Pick Devices			
Keywor <u>d</u> s:	<u>R</u> esults (2):		
BAR LED	Device	Library	Description
Match Whole Words?	LED-BARGRAPH-GRN	DISPLAY	Green LED Bargraph Display
Show only parts with models?	LED-BARGRAPH-RED	DISPLAY	Red LED Bargraph Display
Category: (All Categories) Analog ICs Optoelectronics			

Double click on whichever color you want

Drawing Schematic

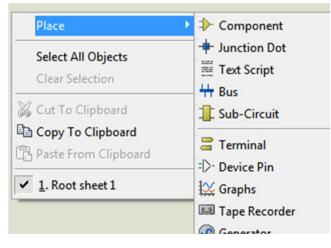
• Now choose device from the list and just left click in the editing window/schematic window.

• An outline of the device will appear. Place it where you want to.


Connecting Wires

• Just move your cursor over to the pin of the device, a small square box will appear. Click on that pin.

- Now a wire will follow the mouse cursor.
- Take the cursor to the pin you want the wire to connect to.


• Click on that pin and connection will be made.

Placing Vcc and GND

- In order to place a Vcc or GND terminal in your schematic, just select terminal mode from toolbar.
- A list of terminals will appear.
- Choose whichever terminal you want to place and then click on the schematic to place the selected terminal.

We can place any item by right clicking And Selecting "Place"

GROUND

Terminals Mode

Simulating 8051

• Draw the following schematic

Downloading Hex File in 8051

• Just double click on the 8051 IC schematic.

button.

• Now browse for "Program file by clicking on the browse

Edit Component Component <u>R</u> eference:	U1	Hidde		? X	
				<u>0</u> K	
Component <u>V</u> alue:	AT89C51	Hidde	en:	<u>H</u> elp	
PCB Package:	DIL40	▼ ? Hide All	-	<u>D</u> ata	
Program File:	\\Test\Assembly.hex	🔄 Hide All	-	Hidden <u>P</u> ins	
Clock Frequency:	11.0592MHz	Hide.All			
Advanced Properties:			l	<u>C</u> ancel	
Enable trace logging	▼ No	▼ Hide All	•		
Other Properties:					
			A		
			~		
Exclude from <u>Simulation</u> Exclude from PCB <u>Layou</u>		archy <u>m</u> odule on pins			

• Pick your desired hex file and click 'open'

Running Simulation.

• Click on the "Play" button to run the simulation

Creating Assembly file in KEIL

- Create the new file.
- Save it as .asm file.
- Now when you add this file to the Project it will be an assembly file.
- You can write your assembly code in this file.

Creating Assembly file in KEIL

- Write the following code and run it in Proteus.
- ORG 0
- MOV A, #055
- MOV P1, A
- END

LAB Task

- 1. Write a code that toggles the bits of P1 port Continuously.
- 2. Write a code that toggles the bits of P1 port after some **delay**. Use delay routine.

ORG 0
Start:
MOV A, #55H
MOV P1,A
MOV A, #OAAH
MOV P1,A
SJMP Start

01	ORG 0
02	Start:
03	MOV A, #55H
04	MOV P1,A
05	ACALL Delay
06	MOV A, #OAAH
07	MOV P1,A
80	ACALL Delay
09	SJMP Start
10	
11	ORG 100
12	Delay:
13	MOV R1,#255
14	Label1:
15	MOV R2,#255
16	Label2:
17	DJNZ R2, Label2
18	DJNZ R1, Label1
19	RET

Delay in C

• To Generate delay in C simply use the for loop.

```
for(i=0;i<5000;i++);
```

• Or to multiply delay, use nested for loop.

```
for(i=0;i<500;i++)
for(i=0;i<10;i++);
```

Task

 Write your name on easy 8051 Kit LEDs using delay in C.

Task

- void chr_led(char);
- void delay(int);
- void main(void)
- {
- while(1)
- {
- chr_led('B');
- delay(10);
- chr_led('A');
- delay(10);
- chr_led('B');
- delay(10);
- chr_led('A');
- delay(10);
- chr_led('R');
- delay(36);
- •
- }
- //Function Definitions
- void chr_led(char mychar)
- {
- switch(mychar)
- •
- case 'A':// To write A
- P0=~0xFE;
- P1=~0x11;
- P2=~0x11;

- P3=~0xFE;
- break;
- case 'B':// To write B
- P0=~0xFF;
- P1=~0x99;
- P2=~0x99;
- P3=~0x66;
- break;
- case 'R':// To Write R
- P0=~0xFF;
- P1=~0x19;
- P2=~0x19;
- P3=~0xE6;
- break;
- }
- }
- void delay(int delay)
- {
- int i,j;
- for(i=0;i<10000;i++)
- for(j=0;j<delay;j++);
- •